Tensor Deflation for CANDECOMP/PARAFAC. Part 3: Rank Splitting

نویسندگان

  • Anh Huy Phan
  • Petr Tichavský
  • Andrzej Cichocki
چکیده

CANDECOMP/PARAFAC (CPD) approximates multiway data by sum of rank-1 tensors. Our recent study has presented a method to rank-1 tensor deflation, i.e. sequential extraction of the rank-1 components. In this paper, we extend the method to block deflation problem. When at least two factor matrices have full column rank, one can extract two rank-1 tensors simultaneously, and rank of the data tensor is reduced by 2. For decomposition of order-3 tensors of size R × R × R and rank-R, the block deflation has a complexity of O(R3) per iteration which is lower than the cost O(R4) of the ALS algorithm for the overall CPD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cramér-Rao-Induced Bounds for CANDECOMP/PARAFAC Tensor Decomposition

This paper presents a Cramér-Rao lower bound (CRLB) on the variance of unbiased estimates of factor matrices in Canonical Polyadic (CP) or CANDECOMP/PARAFAC (CP) decompositions of a tensor from noisy observations, (i.e., the tensor plus a random Gaussian i.i.d. tensor). A novel expression is derived for a bound on the mean square angular error of factors along a selected dimension of a tensor o...

متن کامل

On Fast Computation of Gradients for CANDECOMP/PARAFAC Algorithms

Product between mode-n unfolding Y(n) of an N-D tensor Y and Khatri-Rao products of (N − 1) factor matrices A(m), m = 1, . . . , n − 1, n + 1, . . . , N exists in algorithms for CANDECOMP/PARAFAC (CP). If Y is an error tensor of a tensor approximation, this product is the gradient of a cost function with respect to factors, and has the largest workload in most CP algorithms. In this paper, a fa...

متن کامل

Low Complexity Damped Gauss-Newton Algorithms for CANDECOMP/PARAFAC

The damped Gauss-Newton (dGN) algorithm for CANDECOMP/PARAFAC (CP) decomposition can handle the challenges of collinearity of factors and different magnitudes of factors; nevertheless, for factorization of an N-D tensor of size I1 × · · · × IN with rank R, the algorithm is computationally demanding due to construction of large approximate Hessian of size (RT × RT ) and its inversion where T = n...

متن کامل

New Ranks for Even-Order Tensors and Their Applications in Low-Rank Tensor Optimization

In this paper, we propose three new tensor decompositions for even-order tensors corresponding respectively to the rank-one decompositions of some unfolded matrices. Consequently such new decompositions lead to three new notions of (even-order) tensor ranks, to be called the M-rank, the symmetric M-rank, and the strongly symmetric M-rank in this paper. We discuss the bounds between these new te...

متن کامل

Local Convergence of the Alternating Least Squares Algorithm for Canonical Tensor Approximation

A local convergence theorem for calculating canonical low-rank tensor approximations (PARAFAC, CANDECOMP) by the alternating least squares algorithm is established. The main assumption is that the Hessian matrix of the problem is positive definite modulo the scaling indeterminacy. A discussion, whether this is realistic, and numerical illustrations are included. Also regularization is addressed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1506.04971  شماره 

صفحات  -

تاریخ انتشار 2015